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SECTION 1

INTRODUCTION

1.1 GENERAL

Inertial systems must sense six quantities (three anqular posi-
tion and three acceleration). Current mechanization of such systems
.requires six single-degree-of-freedom instruments or a combination of
two-degree-of-freedom and single-degree-of-freedom instruments (total-
ling four or five instruments). Multisensors are currently being
developed at CSDL and their successful development will reduce the
number of instruments needed for navigation to three, or possibly two,
thus, both platform size and total system cost will be reduced. The
multiple outputs could also be used to increase system reliability.

The multisensor program leads directly into a family of multi-
function instruments which will decrease the costs of navigation
components and systems. The multisensor also contributes immediately
to high accuracy gyro technology. These benefits will be reviewed after
single~-deqree-of-freedom instruments and tieir extension to multisensors

are discussed.

1.2 SINGLE-DEGREE-OF-FREEDOM INSTRUMENTS

A floated single-degree-of-freedom gyro consists of a case, a
float, a wheel, and electromagnetic sensors and torquers. The wheel is
spun at high angular velocity and is mounted rigidly to the float (see
Figure 1-1). The float-case gap is filled with viscous fluid having a
density such that almost no residual gravity-buoyancy force is exerted
on the float. Small mismatches in fluid density and float unbalance are
countered by a magnetic suspension which centers the float with respect
to the case. Angular velocity of the case (hence, torques »n the wheel)
about the input axis (see Figure 1-1) interacts with the wheel angular
momentum to rotate the float about the output axis. This angular rota-
tion is sensed by an electromagnetic signal generator, and is used in
feedback loops with a stabilized platform or with an electromagnetic
torquer mounted inside the instrument case to maintain the float at null
position., The instrument output is either the stable-platform position
or the torque required to null the float.



¥
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As illustrated in Figure 1-1, the CSDL multisensor is a single-
degree-of-freedom floated gyroscope with pendulosity intentionally
added along the gyro output axis. Although a cylindrical float is
depicted in Figure 1-1, analyses indicate that noncylindrical shapes
merit consideration. The gyro functions conventionally, while — because
of the added pendulosity — specific force inputs along the spin or
input axes produce torques about the input and spin axes respectively,.
These applied torques are rebalanced by the float suspension to main-
tain a null position. The rebalance torques are measurement outputs

which are proportional to the input specific forces.

| (ACCELEROMETER OUTPUT
(TORQUE ABOUT S)

S ACCELEROMETER OUTPUT

(TORQUE ABOUT 1)
GYRO OUTPUT

INPUT

PENDULOSITY ALONG
OUTPUT AXIS

NOTE THAT EITHER ONE OR BOTH OF THE

6/73 3373 ACCELEROMETER CHANNELS CAN BE USED.

Figure 1-1. Multisensor concept.

The CSDL multisensor is simple; conceptually, the instrument per-
forms no functions beyond those required of a conventional single-
degree-of-freedom gyro. The gyro functions as a traditional single-
degree-of-freedom gyro, while mass unbalance has always been countered
by suspension forces. The main difference between the multisensor and
conventional instruments is the greater output-axis unbalance and the
additional measurements which must be taken to sense specific force.



Autonetics, Northrop, and Litton have investigated unrelated
multisensor concepts. Autonetics employed an electrostatically suspended
two-degree-of-freedom gyro. A tuned rotor suspension with an essentially
independent gyro and accelerometer was studied by Litton. The Northrop
device used quartz crystals for sensing a pressure differential in liquid
mercury to sense gyro function, and used compressed crystals to support
the instrument and sense acceleration. Teledyne, also, is actively pur-

suing multisensor development.

1.3 MULTIFUNCTION INSTRUMENTS

Traditionally, single-degree-of-freedom instruments have utilized
the cylinder's axis of symmetry as the measurement axis. Rather than
merely demonstroting an added accelerometer function, the multisensor
uses the transverse axis as a measurement axis. Considerable fabrica-
tion and maintenance cost savings could be realized from the following

devices, assembled from one design with only modification to the float:

(1) Three-deqree-of-freedom rate sensor where the float is
constructed with no rotating parts and the center of buoyancy

nominally coincides with the center of gravity.

(2) Two-degree-of-freedom gyroscope, in which the float contains

a spinning angular momentum generator.

(3) Two-degree-of-freedom accelerometer whose float contains no
rotating members but incorporates a mass unbalance to effect

an acceleration sensitive response,.

(4) Multisensor which features both rotating wheel and mass

unbalance.

The multisensor program is contributing directly to the develop-
ment of high performance gyroscopes. To realize loop response required
for navigation, the multisensor incorporates active suspensions which are
planned for use in advanced gyroscopes. Multisensor analyses and experi-
ments study radial forces and motions, phenomena which must be understood
in order to design advanced third and fourth generation single-degree-of-
freedom instruments. In designing multisensors, damping constants and
their effects are carcfully considered, thereby gaining insight for other
programs which seek to change damping by decreasing fluid viscosity or by

increasing the fluid gaps.



This program combined analyses and testing of a feasibility instru-
ment in order to predict the performance of an optimized multisensor.
The following were used as guidelines:

(1) Traditional gyro drift stability less than one meru
{(0.015 deg/hr):;

(2) Accelerometer stability of 100 ug bias and 50 ppm scale

factor;
(3) Strapdown application with maximum case rate of 300 deg/s.

The feasibility device was constructed under internal funding,
from existing 18 IRIG Mod D hardware, to minimize cost and permit test-
ing in a short time scale. The feasibility device is not optimized in
any sense and is merely intended to enable projection of optimized
confiqgurations. Previous testing was minimal because of suspected
contamination in the fluid. Except for new flex leads, the removal of
contamination, and a fluid change, the instrument was unchanged from

previous builds.

Previous testing and analytic work resulted in the following
changes external to the instrument prior to test:

(1) The axial suspension was made active to minimize reaction

torques (Paragraph 3.7);

(2) The accelerometer and gyro loops were built to implement the
desired control laws and enhance experimental flexibility;

(3) The instrument mounting arrangement was redesigned to assure
end-to-end thermal symmetry (Paragraph 3.4).

1.4 ORGANIZATION OF REPORT

Section 2 describes the feasibility instrument and test results.
In Section 3, the tests results and analyses, which are included as
appendices, are combined to clarify the principal factors contributing
to multisensor performance. Section 4 presents the design recommended
for a 10 size (approximately one inch case diameter) instrument. The
report is summarized in Section 5 with recommendations for further
testing which should be accomplished before finalizing the multisensor

design.



SECTION 2

FEASIBILITY MULTISENSOR TEST

2.1 SUMMARY

The feasibility multisensor test program was designed as an
experimental investigation rather than a qualification test, although
performance guidelines were stated (see Section 1). Understanding the
instrument's behavior must be emphasized. Analyses have shown that
the present feasibility instrument is probably not an optimal configura-
tion. That knowledge coupled with analysis (see Section 4) will indi-

cate improvements and the potential of future multisensor designs.

The performance objectives are 1 meru (0.015 deg/hr) gyro drift
stability, and 100 ;g bias and 50 ppm scale factor stability for the
accelerometer fun.tion. The 100 hour drift stability test acceler-
ometer uncertainties about the mean are 80 ppm scale factor and 50 g
bias. The gyro bias drift stability is 0.09 meru (0.0015 deg/hr) and
acceleration sensitive drift stability is 0.29 meru/g (06.0045 deg/hr/qg).
Stability data is discussed in Paragraph 2.6.

All priority tests listed in Reference 8 were completed except
for closed loop frequency response measurements and noise errors

within the instrument's bandwidth.

Tests which demonstrated the multisensor parameter sensitivity
to changes in float position, temperature, wheel power, excitation

voltage and current are described in Paragraph 2.5.

In addition to parameter stability, a 72 hour one position stability

test is discussed in Paragraph 2.7. Calculations of drift uncertainty
results were made using data which includes trends. After the trends
are removed, 1mprovements of 0-40 percent in parameter stability are
realized.

A warm-up characterization test was nerformed from only one level
of temperature dormancy. The test results including instrument tempera-

ture are presented in Paragrapi: 2.8.



Multisensor cross-coupling tests have been conducted to evaluate
the effects of misalignment since the accelerometer's input axis
probably will not be on the reference axes or coincident with the gyro
input axis. Also, the accelerometer outputs contain rate information
(Paragraph 3.2 and 3.3). The data reduction algorithms are available,
however, since some difficulty has been experienced in transferring the
raw data to a new computer system, the results of this test are not
available at this time.

Tests were conducted to determine the cause of the accelerometer's
long settling time which was previously reported (October 1976) at
Quarterly Review. The tests revealed that the readout active filters
require up to 30 minutes for the output to reach its final value.

The settle time is related Lo the initial value of the filter's input,
During instrument tumbling, large rate torques cause the filter to
saturate or nearly saturate. The filter's settling characteristic is
attributed to capacitance dielectric which is somewhat analogous to
magnetic disaccommodation. A mylar capacitor which replaced the original
tantulum capacitor eliminated this problem. The instrument response with
mylar filter capacitor is given in Paragraph 2.8.

2.2 INSTRUMENT DESCRIPTION

The feasibility multisensor is a single-degree-of-freedom floated
gyroscope with pendulosity intentionally added along the gyro output

axis.

The instrument closely resembles the schematic shown in Figure
1-1, and is depicted in cutaway form in Figure 2-1. Pertinent charac-
teristics are tabulated in Table 2-1. The feasibility instrument was
designed to minimize cost and to produce data in a short time frame;
thus, the instrument is an Inertial Reference Integrating Gyroscope
(18 IRIG Mod D) with modifications. As discussed in Chapter 4, optimized
configurations will probably differ from the feasibility instrument.
Pendulosity was added by reworking the balance rings. The tapered
suspension was replaced by separate radial and axial suspensions. The
gyro signal and torque generators were redesigned to yield accelerom-
eter loop displacement signals (in addition to performing their normal
functions) so that active control of the accelerometer rebalance could
be implemented. End housings were altered so that separate leads (see
Figure 2-2) for each winding are available to increase experimental
flexibility. The float-case gap was tapered to reduce the rotational
damping coefficients about the spin and output axes.
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Fiqure 2-1. Feasibility multisensor.

Figure 2-2 shows the multisensor mounted in the test fixture
which was designed so that the instrument will be thermally symmetric
from end to end in order to reduce accelerometer scale factor and bias

instabilities.

2.3 BUILD INTEGRITY

After discovery or a broken pivot in the signal generator end,
the instrument was refabricated and returned to test on 24 September
1976. The multisensor was wired and connected with passive suspensions
to determine the acceptability of the rebuilt instrument. All measured
parameters are within the specifications of a normal (18 series) gyro
except flotation temperature is 10°F higher than specified (132°F) in
Table 2-1. This flotation discrepancy resulted because the flotation
rings were removed from the float while the instrument was filled with
low viscosity fluid during a previous IR&D program. The measured out-
put axis damping is reduced by a factor of 2 as a result of the increased

operating temperature.
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TABLE 2-1. BUIwuD INTEGRITY TEST PARAMETERS.

Axial centering ratio = 0.93
Radial centering ratio SS = 0.56 o o
ST = 0.66 B
! TS = 0.90
TI = 0.83
— e S S T—— ——
Gyro SG-TG null coincidence < 1.0 mr

— — — 4 — o

1.14 x 10°% dc s

Gyro SG sensitivity with

o
>
Q. |
o
3
s
(VS
o
Q
0
£
]

0 = 4 at 6 mA/leg (I ori) = 95.8 mv/mr

OA float stop angles +15.3 mr, -12.1 mr
Wheel power (total) = 9.11 watts

ASG electrical centers (nulls)

were determined

Float freedom ramp test

indicated no problems

Flotation along I axis 142.6°F
Flotation along O axis 144.8°F

Wwhen the accelerometer's active suspension control loons were
closed, the output signals were very noisy. The spin axis forcer
(which sums torques about IA) signals exhibited noise level aqreater
than the loon capability of 2.5 gravities. In marticular, the
forcers on the float TG end showed a greater rms noise level than
the SG end. This observation verified that the gyro torque rebalance
current interacts magnetically with the accelerometer's signal
generator since both share the same electromagnetic circuit. Also,
‘small signal generator noise propagates into large forcer noise
because of the large gain recuired to achieve wide bandwidth with
“high damping about the transverse axes (see Section 3.6). To
allow further testing of the multisensor, the accelerometer band-
‘width (refer to Appendixes B, C, and D) was reduced from 22 to
n.8 Hz and a small transformer was added which couples the gyro
toraver secondary and the accelerometer's signal generator to

+cancel the magnetic coupling which occurs within the instrument.
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2.4 DATA PROCESSING

The multisensor data was processed on a digital computer. After
the data is recorded on magnetic tape using the Data Acquisition System
(DAS), it is mounted on the tape deck of the PDP8 computers. The tape
is read by a program which converts files produced by the DAS into files
which can be used by the PDP8.

The analog signal files are the input to another program where
they are transformed. Each raw data point X is modified by the equa-
tion Y = A X + B. The normal values of the analog signals which have
been suppressed by passing each accelerometer output through a Fluke
differential voltmeter are reintroduced. Also, each raw data point is
scaled. The scaling constant A (Sections 3.3 and 3.9) was determined
by a calibration test for each accelerometer axis to minimize off-
flotation-effects. The test consisted of producing a small gravity
change to the accelerometer input axis and measuring the corresponding
change in output force voltage on each end of the float. The constant
is then calculated by the ratio of the two voltages for each axis.
These constants reduce the errors between the two voltage outputs of
an accelerometer axis because of mismatched electromagnetic windings
and readout electronics. The value of B for a given axis is the
suppressed voltage for that axis times A. The resulting transformed

files were processed by the following options:

(1) Statistics - mean, standard deviation, and coefficient of

vibration,
(2) Linear regression - drift analysis.
(3) Plotting - graphical representation of data.
(4) Average points - filters the data.

(5) Combining files - sum of force signals for each accelerom-

eter,

Four mean values of force signals ESI' ETI' ESS' and ETS are
obtained. To compute scale factor and bias for each accelerometer,
mean values are processed from a two point test (2 from IA up and 2
from IA down). The values are an input to a program that computes SF

and bias according to the following equations.

10
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I Axis SF =

where:

1 Accelerometers

—_—__——1 h]
2 g cos 8 :[LSI(Q) + ETI(O)] -[ESI(9+n) + ETI(6+n)}:

l

o 1
= )
I Axis Bias 3 SFI l[ESI(e t ETI(G)] + [EST(e+n) + ETI(0+nﬂ‘
ESI = transformed voltage SG end 1 axis
ETI = transformed voltage TG end I axis

For the S accelerometers: Substitute 6 = 8-1/2; and

north

son wi

E.

SS transformed voltage SG end S axis for E

SI
transformed voltage TG end S axis for ET

E

TS I

Gyro bias and acceleration sensitive drifts are computed by:

+ E_ )

Bias Drift (BD) = E%F (Edown up

. _ 1 .
Accelerometer Drift = 35F (Edown Lup)

Where gyro SF is determined from an OA vertical, IA horizontal
to IA east test

Enorth ~ Eeast

2RA = 738.9 meru

SENSITIVITY TESTS

Sensitivity testing was conducted to provide a basis for compari-
th stability data and a better understanding of the feasibility

instrument's behavior. These tests demonstrated the multisensor

sensit

ivity to the following conditions:
(1) Temperature - uniform and gradient (end to end).
(2) Wheel power,

(3) SG primary excitation.

11



(4) Radial and axial position, and
(5) Forces primary current.

Sensitivity test results are listed in Table 2-2. All test data
is plotted in Figures 2-6 through 2-35, |

The uniform temperature sensitivity was conducted by varying the 1
case temperature controller + 4.8°F. The end housing temperature
monitors i1ndicated the same temperature.change occurred end to end, (
therefore, no gradient was introduced. The scale factor and bias
measurements were made after the temperature had settled at least 1/2
hour. An interesting result of this test is that the S-axis SF sensi-
tivity is 2.3 times greater than the I-axis. The S-axis bias is 1.8
times larger than I-axis and of opposite slope. The test was performed
twice with similar results. The differences between axes are
attributed to non-ideal temperature distribution and the voltage scal-

ing factors. Further testing is required.

A thermal gradient test was performed. A disc type heater was
cemented to the SG end housing to produce an end unbalance heater power.
An increase in SG end temperature (0.072°F) caused the case tempera-
ture controller to respond with a decrease and a reduced temperature
in the TG end -0.02°F. The new result is a nonlinear temperature
gradient along the instrument's OA as shown in Fiqure 2-3. Note that
the end mounted thermistors indicated a 1.5°F cooler than normal oéerating
temperature than the center of the instruniernt. Because the OA thermal
gradient is not linear, the sensitivities for this test, listed in

Table 2-2, should be interpreted as approximate values only.

Wheel power sensitivity was determined by varying the excitation
+5 percent from a normal of 9.1 watts. Sufficient time was allowed
for temperature settling before scale factor and bias measurements
were made. A 5 percent change in wheel power causes a 0.02°F change
in instrument case temperature. The temperature controller responds
to decreasing wheel power by increasing heater power. The S-axis
scale factor sensitivity is 4.5 times larger than along the I-axis.
The difference between axes is attributed to uncertainty in tempera-
ture distributian and/or in the voltage scaling factors.

The accelerometer scale factor sensitivities to SG primary exci-
tation are small and nearly identical in both axes. The S-axis bias
sensitivity is 20 times larger than the I-axis sensitivity. Similarly,
the reaction torque attributed to the forcer primary is 20 times

12
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larger in the S-axis than in the I-axis. These three observations are
explained by misalignments between the zero torce positions of the
signal generator, the forcer primary zero force position, and the

signal generator zero displacement signal position,

+0A

T NORMAL TEMPERATURE
DISTRIBUTION

)
}A+0072°F

= e .

A-002°F | Z

GRADIENT TEST
TEMPERATURE

DISTRIBUTION

Figure 2-3. Multisensor normal and temperature gradient distribution.

In preliminary air bearing tests at the component level, the
accelerometer signal generators were tuned with positive elastic
restraint to balance the negative restraint of the constant magnitude
square wave forcer primaries. Elastic restraint is defined as a posi-
tion sensitive force. This technigque's success is reflected in the I-
axis bias sensitivity to I-axis radial position (250 ug/uin, not very good
since this is near the restraint of forcer primary alone) and similarly for
the S-axis (10 ug/min, an acceptable value) (Appendix D elaborates).
To account for assymmetries between components and other sources of elastic
restraint such as the axial suspension, the elastic restraint tuning
should be done in the actual instrument as will be discussed shortly.

Return to the alignment of the various null conditions. Because
of the integrator in the accelerometer loops, the float position with

14



respect to the case is determined when the output of the signal genera-
tor is null. With current transformers, this corresponds to equal
currents on opposite magnetic cores. The signal generator is tuned as
a passive suspension so that the zero force point which depends on the
capacitors may differ from the equal current position. The sensitivity
to signal generator excitation is proportional to the displacement
between the two centers. If the centers do not coincide, changing the
excitation causes the signal generator to exert a force. The controller
then alters the forcer secondary current so that the equal current con-
dition is met and the sum of forces exerted on the float is zero.
Similarly, a displacement between the SG zero current position and

the forcer primary null force point results in the reaction torque

attributed to the forcer primary.

A further explanation of the situation and estimate of the degree
of misalignment are offered in Figure 2-4 which models the forcer and

SG at one end. The letters refer to the following:

(1) Line A is the force displacement characteristics of the

forcer primary.

(2) Line B is the force-displacement characteristic of the

signal generator.
(3) Point C is the zero force point for the signal generator.
(4) Point D is the zero force for the forcer primary.

(5) Axis E is the equal current null position of the signal
generator. Because of the integral control loop, steady-
state operation will result on this axis,

{6) Force F is the reaction of the forcer primary.
(7) Force G is the reaction of the signal generator.

(8) Force H is the force exerted by the forcer secondary so
that the sum of forcer (H plus F) and signal generator
forces (G) is zero (with no external forces operating).

(9) Slope I is the elastic restraint of the forcer.
(10) Slope J is the elastic restraint of the signal generator.

The situation in the actual instrument is complicated by the
presence of two ends; however, the basic argument remains valid. For
the forcer restraint of 1.6 x 10° ug and measured elastic restraint
(air bearing tests) of 2 x 10° dyn-cm/cm, the displacement between

15




si1gnal generator null and forcer null is 260 pin. a fiqure certainly

nossible with manufacturing tolerances.

FORCE

POSITION

Figure 2-4. Performance of SG and forcer.
(see text for nomenclature)

In future testing, bias and elastic restraint tuning will be
performed in the instrument. For the present device where the signal
generator is connected in series parallel connection, elastic restraint
can be adjusted by increasing the capacitance on both lejs of a given
axis simultaneously. Bias can be adjusted by either of the following

techniques:
(1) Change the SG null by adding a dummy signal;
(2) Push-pull the SG capacitors; and/or

(3) Add shunt resistors parallel to the legs of the forcer
primary.
Since future designs will arrange the SG legs in bridge circuits,
option 2 can be implemented by adding shunting capacitors parallel to

the inductances.

The instrument's float position sensitivity was determined by
dummy directing the active suspension loops along each of the S-, I-,
0O-axes. Sufficient time was allowed for transients to settle before

16



tuking data. Axial and cross-axis displacement scale factor sensitivi-
ties are less than 10 ppm/uin. I-axis and S-axis scale factor as a
function of position along their respective axes display a distinct
nonlinear characteristic particularly with I-axis position as shown in
Figure 2-28. The test was repeated with similar results; however,

more data points will be required to fully characterize the instrument's
behavior. The nonlinearity in scale factor could be caused by non-

linearity in the force position relationships of iagnetic components.

2.6 STABILITY TESTS

The multizensor was tested for a period of 100 hours concentrating
on the accelerometer scale factor and bias stability. The instrument
was positioned OA horizontal east, parallel to the table, with IA

up and down perpendicular to the earth's axis to minimize H coup-

7]
W OA
Ling (see Figure 2-5 and Paragraph 3.2). Ac each position, sufficient

time was allowed for the forcer signals to settle before accumulating
data. Ten-minute segments of one second sampled data is recorded on a
data acquisition system magnetic tap for computer analysis. Additional
measurements recorded during the stability tests moni%ored the following:

(1) Instrument end housing and case temperature;
(2 Changes in wheel power;
(3) Axial force, and

(4) Primary excitation.

_~E
Q)

’wind

Figure 2-5. Multisensor position for scale factor
and bias calibration tests,
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The stability test results and performance objectives are
listed in Table 2-3. All data is plotted as shown in Figqures 2-36
through 2-44. ‘hese results indicate that excellent gyro performance
has been obtained. The bias drift standard deviation exceeds the goal
(0.015 deq/hr) by at least a factor of ten (0.00135 deg/hr). This
performance is attributed to the independent active control of the
radial and axial suspensions despite the large OA pendulosity (by gyro

standards).

The accelerometer performance data is within the goals except for
the marginal SF (62.3 ppm) uncertainty of the S-axis. Wheel power and
SG primary excitation stability measurements do not contribute signifi-
cantly to the accelerometer uncertainties. Wheel power stability is
<0,002 watts contributing a maximum uncertainty of 8 ppm scale factor
hased on independent sensitivity measurements listed in Table 2-2.

The SG primary excitation stability was measured at 0.045 percent but
due to equipment difficulties at the time the source was not monitored,
during the stability test. The contribution of this source to scale
factor uncertainty is 1.5 ppm. The S-axis has a major bias sensitivity
(65 ug/0.045 percent) to primary excitation while the I-axis is 20
times smaller (3.2 ug/0.045 percent). The bias standard deviations are
nearly the same for both axes during stability testing; therefore, it
is reasonable to assume then that this excitation did not change

significantly during the test.

Multisensor temperature variation is a major source of scale
factor instability according to analysis and sensitivity measurements,
(see Paragranhs 2.5 and 3.4). Based on correlation of thermal measure-
ments with accelerometer data, temperature was the major contributor
to the stability test uncertainties. A careful examination of test
data plotted in Figures 2-36, 2-37 and 2-42 shows a definite agreement
in scale factor and temperature characteristics. In addition, the
-0.009°F temperature drift will produce approximately 10 ppm drift in
scale factor. Also, scale factor variations about the trend line

have relative magnitudes that agree well with temperature oscillations.

The temperature plot of Figure 2-42 was produced from strin
chart recordings with the instrument IA-SA positioned down. This plot
is also representative of the other three thermistor characteristics
which are not presented. Instrument case temperature is shown plotted
in Figure 2-43. Despite some difficulty with a noisy Sanborn strip
chart recording, narticularly during the first half of the test, the

18
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case temperature oscillations ayree with the end housing measurements
from 72 hours to 100 hours ot the test. The case temperature positive
trend is due to the temperature controller reaction to a decreasing

trend in ambient temperature as indicated by base and end housing

measurements.,

2.7 ONE-POSITION STABILITY TEST

The multisensor was operated with output axis horizontal and
east with the input axis up and perpendicular to earth axis (42 degrees
from vertical) for 72 consecutive hours. A commercial tilt meter
mounted on the test stand measured tilt angles in the north-south and
east-west planes. The IA-SA plane lies in the north-south plane.

Data was recorded on the data acquisition system. The four
radial forcers, the gyro torquer, four case thermistors, wheel power
and the platform tilt were monitored. Sampled at ten second intervals
and averaged over two minutes, the data versus time is plotted wita
statistical information in Figures 2-45 through 2-51. Since the four

thermistors were nearly identical, only one temperature plot is

included.

Power spectral densities are plotted in Figures 2-52 through
2-54. Aliasing effects were assumed small for the following reasons:

(1) Dbata averaging acted as a low pass filter;
(2) The accelerometer channels were filtered at 0.02 Hz;

(3) Analog strip chart recordings did not reveal rising spectral

characteristics beyond the Nyquist frequency.

Leakage (the sampling of a nonintegral number of cycles) has affected
the spectral plots significantly. The tilt versus time plots clearly
demonstrate spectral peaks which leakage spreads as a L/f?.

The accelerometer standard deviations about the trend are 16.5 ppm
for the I-axis and 26.3 ppm for the S-axis, figures which are two and
three times better than the scale factor and bias measurements of the
two position tests described in Paragraph 2.6. The S-axis accelerometer
drifted -33 ppm during the /2 hours while the I-axis drifted -169 ppm.

The drift of the two axes is similar if the step at 55 hours in the I-
axis data 1s omitted. This shift could be caused by a capacitor shift
since this axis has a large position sensitivity (250 pg/pin). Appendix D
describes this phenomenon more completely. With the sensitivities
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calculated for averaqge temperature changes, the trend of 0.00230F/hr
could account for -13.8 and -8 ppm in the S- and l-axes respectively.

Both accelerometer channels exhibit low frequency oscillation (less

than two in the 72 hours) which leak to form the accelerometer smectrals,
l/f2 slope at low frequencies. The temperature spectrum between 10-4 Hz
and 4 x 10-3 Hz is approximately white noise of amplitude 6 x lO—A 0F2/Hz.
Multiplying the temperature spectrum by the I-axis average temperature sen-

sitivity and using 5.9 volts as one gravity, one obhtains an accelerometer
spectrum of 2 x 10 ¢ voltz/ﬂz which is the value of the I-accelerometer spec-

: and 4 x 10-3 Hz. Performing a similar calculation on

6

trum between 2 x 10~
the S-axis results in 2 x 10 voltz/Hz, a value which is an order of mag-

nitude less than the horizontal nortion of the spectrum.

The wheel-power spectrum and the accelerometer sensitivities
also contribute to the accelerometer errors., Fitting the wheel
spectrum with white noise of 0.0015 watt?/Hz, accelerometer spectra
attributed to wheel-power variation are 6 x 10”7 volt?/Hz for the
S-accelerometer and 4 x 10™°% volt?/Hz (see Figure 2-58). Both figures
are an order ot magnitude less than the plotted spectra. Consideration
of this sensitivity is not entirely valid since wheel-power shifts
affect temperature which has been considered separately. However,
gyro testing has revealed coupling between tlex leads and motor wind-
ings which do not depend on temperature so that the wheel-power
correlation 1s included. Although the precise cause of the S-accelerom-
eter spectrum between 10-° Hz and 4 x 10~°® is unclear, the following

comments are offered:

(1) The spin axis contains information about case rates about

the output axis.

{2) The coupling of the accelerometer signal generator and the
gyro is probably not the source. With white torque noise,
the erroneous signal in the accelerometer signal generator
would also be white noise because of the inductive coupling.
From Appendix D, the torque rebalance noise at low frequen-
cies would rise proportional to frequency squared which

disagrees with the plotted spectrum.

(3) Because of uncertainties in measuring sensitivities and
temperature profiles, estimated sensitivities could be in
error by a factor of two. An increase in sensitivity of
scale factor to temperature level would explain the flat

portion of the S curve,
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The time data and spectrum for tilt indicate that tilt has only
a small effect on stability data. Figures 2-55 and 2-56 show an rms
tilt of 2,7 ~ 10~% rads at one cycle per day which represents an accel-

erometer error of only 2 ppm when the axes are 45° to the vertical.

To summarize the accelerometer data, temperature stability impacts
accelerometer stability greatly although other factors are present.
The sensitivities to radial positions and the drift data and low fre-
quency spectra strongly indicate another mechanism such as capacitor
shift. Further study is recommended.

The gyro torque spectrum, Figure 2-54, approximately agrees with
data compiled from conventional 1¥ IRIG and TGG. The cited references
attribute the noise to internal disturbances such as temperature
gradients across the float, turbulence in the air bearing, and signal
generator noise and to environmental input. As indicated in the
temperature spectrum, several areas of the temperature spectrum closely
match those of the gyro; however attempts to correlate the two through
the gyro sca‘e factor sensitivity to average temperature result in gyro
torque spectra of 3 x 10-‘ meru?/Hz compared to the plotted spectra of
0.5 meru“/Hz. Temperature gradient along a radial axis, a principle
driver of gyro error (Reference 7), was not monitored.

2.8 REACTION/WARM-UP CHARACTERISTIC
The purpose of this test was to demonstrate:
(1) The thermal time constant of the instrument, and

(2) Pull-in characteraistics.

The reaction time of the multisensor was tested by removing the
instrument heater power, decreasing the operating temperature 1.5°F.
The temperature controller causes a 2.0°F overshoot during warm-up as
shown in Figure 2-59. The test was performed with the input axis
vertical and the spin axis horizontal. A decrease in measurement
resolution was required to maintain on-scale recordings of instrument
response. Because of reduced resolution capability, baseline measure-
ments were conducted for comparison purposes prior to and following
the transient test. The multisensor outputs were stable within five
minutes after the temperature settled. I-axis forcer output plots
(gravity sensitive) are shown in Figures 2-60 and 2-61, with the
resultant summed (note concellation by summation) outputs in Figure
2-62. The S-axis (insensitive to gravity) outputs are plotted in
Figures 2-63, 2-64 and 2-65. Multisensor temperature presented in
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Figure 2-59 1is monitored by one of the four thermistors mounted on the

end housings. The other thermistor responses are the same.

The gyro response from this test is not presented here, because
of large gyro output voltage due to the vertical component of earth
rate (673.8 meru) about the gyro input axis and the DAS automatic rang-
ing limited resolution capability of +1.0 millivolt (0.5 meru). Volt-
age suppression was not used on the gyro output prior to data acquisi-
tion. Based on data from a trial test (gyro IA perpendicular to EA),
the gyro output 1s stable within five minutes after the temperature
has settled. The gyro response characteristic during warm-up from
this test is plotted in Figure 2-66.

The multisensor's reaction to axial float motion was measured as
the float returned to its center position from a 120 microinch TG dis-
placement during sensitivity testing. The SG end S-axis force output
and axial suspension current did not record properly on the DAS during
this test. Strip chart recording of the S-axis accelerometer shows
similar results (not shown) as the I-axis outputs plotted in Figures
2-67 and 2-68. Strip chart recordings indicate a 50 minute axial
suspension settling time. The accelerometers and gyro are stable 35
minutes after the suspension is turned on. The gyro response is plotted

in Figure 2-69.

Temperature measurements made on the SG and TG end housings are
shown in Figures 2-70 and 2-71. Since the float was initially in the
1'G end, the active suspension applied pull-in current to the SG end
winding causing a 0.075°F increase in end temperature. The tempera-
ture controller responded by a decrease in power, cooling the Tg end by
0.045°F. Approximately 16 or 17 minutes was required for the tem-
perature to stabilize after turn-on. The accelerometer's long settling
characteristic is caused by large reaction forces due to the axial sus-
pension's stator/rotor relative cocking and/or uncovering. The axial
suspension's large reaction forces were discovered during a previous

multisensor IR&D program.

Section 4 introduces design modification which will speed pull-in

time considerably.
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Figure 2-53. &-Axis accelerometer power spectrum (trend removed).
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